
Journal of Fluids and Structures (1999) 13, 631}646
Article No.: j#s.1999.0222, available online at http://www.idealibrary.com on
THE TRANSVERSE RESPONSE OF SANDWICH PANELS
TO AN UNDERWATER SHOCK WAVE

K. MAG KINEN

Kockums AB, Karlskronavarvet, SE-371 82 Karlskrona, Sweden
Royal Institute of Technology, Department of Aeronautics, Division of Lightweight Structures

SE-100 44 Stockholm, Sweden

(Received 16 September 1998 and in revised form 9 March 1999)

The response of submerged structures to an underwater shock wave involves both structural
and #uid behaviour. For sandwich structures the response to an initial shock wave in the
transverse direction is signi"cantly di!erent from that of a homogeneous structure. This is
due to the elastic properties of the core in the sandwich. For a homogeneous structure one
cavitation zone is initially developed and the position of this zone is dependent on the assumed
cavitation pressure. At a sandwich structure two cavitation zones initially appear, one adjacent
to the structure and another away from the structure, depending again on the assumed
cavitation pressure. The response of a sandwich panel in the transverse direction is also
investigated, using a combination of a numerical method and "nite elements, developed for the
#uid}structure interaction problem. The method includes the appearance of cavitation in the
#uid, it is found that, as the sandwich section is moving, the faces in the sandwich oscillate about
the core. The nonlinear properties of the faces give rise to considerable transverse strain which
may very well be high enough to cause delamination in the faces, debonding between the faces
and the core, or core failure. ( 1999 Academic Press
1. INTRODUCTION

WHEN IT COMES TO THE DESIGN of military naval vessels exposed to underwater explosions,
the resistance against shock waves is of major concern. A shock analysis of a vessel involves
several aspects, such as (a) the arrival of the initial shock wave, (b) the decay of the initial
shock wave, (c) local cavitation due to the structural re#ected shock wave or surface
re#ected shock wave, (d) #uid}structure interaction, (e) local cavitation collapse and
(f ) structural response. The whole sequence of events leads to a problem which is very
complicated and di$cult to predict. For simple geometries, closed-form solutions can be
found, but for practical structures numerical methods are unavoidable. However, even the
numerical solution of the coupled governing equations becomes intractable for structures
with hundreds of degrees of freedom. Therefore, approximate methods have been developed
to solve the #uid}structure interaction problem. These methods utilize the Plane Wave
Approximation (PWA) which is an approximation for the early stages of the response and
was "rst developed by Mindlin and Bleich (1953). The method has been used extensively by
Geers (1978) for the early-time predictions of the response of surface ships and submarines
exposed to underwater explosions.

For sandwich shell structures the e!ect of cavitation can be signi"cantly di!erent from
that of a homogeneous shell structure. In the case of a homogenous structure, the need to
consider the deformation in the thickness direction is usually neglected; however, this is not
the case for a sandwich structure which usually has a soft core.
1234}5678/99/050631#16$30.00 ( 1999 Academic Press
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Both Driels (1980) and Handleton (1985) have investigated this problem considering
a homogenous structure, and Driels includes the e!ect of nonzero cavitation pressure. If the
#uid is able to withstand tension pressures then a cavitation zone is opened a distance away
from the structural surface and a certain amount of water vibrates with the structure and
increases its mass. Hayman (1995) investigated a sandwich structure using the same
approach, but included the elasticity in the core and found that two cavitation zones
appeared. A cavitation zone adjacent to the structure appears "rst, and a short time later
one develops away from the structure. The latter is similar to that shown by Driels but
further away from the structure. Both Driels and Hayman use the pressure for the free "eld
which is valid up to a time of one decay length. This means that approximations are valid up
to that time; however, by using the equations of hydrodynamics we may get round this
problem.

Numerical examples using a simple l-D "nite-element model, for di!erent sandwich
con"gurations are evaluated. Expressions from Cole (1948) are used to determine the initial
conditions (incident pressure) from an explosive charge. The pressure on the panel surface is
a!ected by the local cavitation in the #uid, and the numerical examples show that the faces
in a sandwich panel oscillate about the core as the whole sandwich section is moving and
that the global response is similar to that of a homogeneous plate. The nonlinear properties
of the faces give rise to considerable strain and stress in the transverse direction.

2. GOVERNING EQUATIONS

2.1. STRUCTURAL EQUATIONS

The motion of a structure is governed by the equation

MwK#CwR #Kw"p (t), (1)

where M is the structural mass, C the structural damping, K the structural sti!ness, w the
structural displacement and p (t) the applied time-varying load.

For a structure initially at rest we have the initial conditions

w (0)"wR (0)"0. (2)

At the structural surface we also have the compatibility condition between the velocity of
the structure and the #uid particle velocity u:

wR (t)"!u (0, t). (3)

2.2. INITIAL SHOCK PRESSURE

The initial shock wave (free-"eld pressure, p
i
) can be approximated by the following

equation given by Cole and is valid up to one decay length h:

p
i
"p

0
e~t@h,

u
i
"!p

i
/(o

0
c
0
),

(4)

which is an approximation for the early time of the initial shock wave. Here p
0

is the
maximum pressure and h the decay constant which are given by the expressions

p
0
"56)6(Q0>33/R)1>15, (MPa),

h"0)084 )Q0>33(Q0>33/R)~0>23, (ms),
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where Q is the weight of the explosive charge in kg and R is the distance between the charge
and the structure in m. These formulas are valid for HBX charges (HBX being a type of
explosive).

2.3. HYDRODYNAMIC EQUATIONS

In linearized (acoustical) formulation, the equations of hydrodynamics are

Lu

Lt
#

1

o
Lp

Lx
"0,

(5)
Lp

Lt
#o c2

Lu

Lx
"0,

where u(x, t) is the only component of velocity, p (x, t) the deviation from the hydrostatic
pressure, and o and c are respectively, the density of the medium at rest and the velocity of
sound therein. In linear nonstationary problems of #uid}structure interaction the potential
formulation is usually used. Such an approach is convenient because it gives a possibility to
solve a boundary problem for a single (wave) equation; in particular, potential formulations
were used by Galiev (1981) and Geers (1981) in their numerical models.

3. ANALYTICAL SOLUTION

Recently, Hayman has presented an analytical solution for a sandwich plate. For a sand-
wich plate two cavitation zones will open. First, one adjacent to the plate, due to re#ection
of the transmitted wave in the rear face, and a short time later a new cavitation zone, similar
to Driels' solution, will open a distance away from the plate surface due to re#ection of the
incident wave on the front face.

The theory of the pressure "eld in front of a sandwich panel is summarized here.
The equation of motion for the sandwich front face, which is assumed to be thin, can be
written as

(p
i
(t)#p

r1
(t)!p

c1
(t)"m

f
vR
f
(t), (6)

where p
i
(t) is the free-"eld pressure, p

r1
(t) is the re#ected pressure in the water from the face,

p
c1

(t) is the transmitted pressure into the core, m
f

is the mass of the front face per unit area
and vR

f
(t) is the acceleration of the front face. For compatibility at the front face of the

sandwich, the following relation between the velocities must hold:

u
i
(t)#u

r1
(t)"u

c1
(t)"v

f
(t), (7)

where u
i
(t), u

r1
(t), u

c1
(t) are the particle velocities at the panel face for the incident, re#ected

and transmitted waves. The velocities are given by

u
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"
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(t)
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c

. (8)

Solving equations (6)} (8) and combining with the initial condition v
f
(t"0)"0 we

obtain the pressures for the transmitted and re#ected waves which are as follows:

p
c1

(t)"A(e~at!e~bt), (9)

p
r1

(t)"B
1
e~at#B

2
e~bt, (10)
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where the constants are given by
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When the transmitted wave p
c1

(t) has passed through the core and reaches the rear face of
the sandwich, it is assumed that the entire pressure is re#ected back into the core. Since this
face is supported only by air this is a good approximation. The wave reaches the rear face
after a time interval t

1
, where

t
1
"d/c

c
, (11)

in which d is the core thickness and c
c

is the sound velocity in the core given by the

expression c
c
"JE

c
/o

c
. Here E

c
is Young's modulus and o

c
the density of the core,

respectively.
When this re#ected wave reaches the front face again, after time t

2
"2t

1
, one part is then

re#ected back into the core and one part transmitted into the water. The pressure of the
transmitted wave into the water is given by the expression

p
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where the constants are given by
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The total pressure in the water in front of the sandwich panel can now be calculated by
superimposing the solution of equations (4), (10) and (12) and by replacing t with (t#x/c):

p
505

(t)"p
i
(t)#p

r1
(t)#p

r2
(t). (13)

The de"nition of x is positive from the front face and into the core, see Figure 1.
If we have a sandwich panel with 4 mm thick GRP faces and a 60 mm thick core of

200 kg/m3 PVC, the total weight of the panel will be about 24 kg/m2. When exposed to
a shock wave with p

0
"3)0 MPa and a"2580 s~1 at the panel surface, cavitation occurs

"rst at the panel about 0)103 ms after the initial wave strikes the panel; see Figure 2. This is
due to the arrival of the transmitted wave at the #uid-structure interface. At the same time
the re#ection of the incident wave, in the front face, is then progressing out in the water and
cuts o! the tail of the initial shock wave after about 0)123 ms at a distance of about 160 mm
from the panel surface.

4. NUMERICAL METHOD

We consider a semi-in"nite region x50, supposing that the sandwich faces are located at
the coordinates x"0 and x"d and that they are in"nitely thin, are just consisting of
a mass m

f
. The initial shock wave with amplitude p

0
and decay constant h comes to the

front face at the instant t"0 having the direction of its propagation coinciding with the
negative direction of the X-axis. The initial conditions (t"0) for equation (5) are then given
by equation (4).



Figure 1. Waves through the sandwich plate.

Figure 2. Cavitation in front of a sandwich panel.
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4.1. FORMULATION FOR INTERNAL POINTS

For the discrete numerical model we use a mesh with the nodes posed at points (Figure 3)
x
1
,"0, x

2
"h

c
, x

N
"d, x

N`1
"d#h

02
x
X
"X, where h

c
and h

0
are the distances

between the nodes in the core and #uid, respectively, and as it is impossible in numerical
methods to deal with in"nity region we introduce "ctitious boundary x"X. The mesh
widths are constant, although not in principle for further developments. We suppose that



Figure 3. Nodes in numerical model.
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pressure and velocity between the nodes x
j~1

, x
j
at the instant t"mq (q is the time step) are

constant and denote them as p
j~1@2

, u
j~1@2

. The values of these functions at the instant
t"(m#1)q will be denoted as pj~1@2, uj~1@2.

Initial values of p
j~1@2

, u
j~1@2

(t"0) are de"ned by equation (4). The calculations of
pj~1@2, uj~1@2 are performed in two steps.

In the "rst step, we calculate some auxiliary values;
j
, P

j
in accordance with the following

formulas:

;
j
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"
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2
!oc

u
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2
.

(14)

It is important to notice that equation (14) is the analytical solution of the so-called
problem of &&decay of acoustical gaps''.

Hence, if we consider the solution of the problem with piecewise constant initial data
p
j~1@2

, u
j~1@2

at segment x
j~1

(x(x
j
and p

j`1@2
, u

j`1@2
at segment x

j
(x(x

j`1
, see

Figure 4, then the solution of the governing equation (5) will be

In zone I: x
j~1

#ct(x(x
j
!ct, p"p

j~1@2
, u"u

j~1@2
.

In zone II: x
j
#ct(x(x
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, u"u

j`1@2
.
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"
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2
!oc
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#u
j`1@2

2
.

The system of waves indicated in Figure 4, keeps its pattern until the time instant when
sound waves from two nearby nodes meets. The procedure for construction of the analytical
solution, tracing for all acts of such meetings, is very complicated and, in the second step,
approximate values of p j~1@2, uj~1@2 are de"ned on the basis of the laws of conservation. In
the second step of the method we integrate equation (5) and obtain

QC

ou dx!QC

p dt"0,

QC

p

c2
dx!QC

oudt"0,

(15)



Figure 4. Piecewise constant data.
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where C may be an arbitrarily closed contour at the plane (x, t). The "rst of equations (15)
is the law of conservation of momentum (: ou dx is momentum and : pdt is pressure
impulse), the second is the law of conservation of mass as in acoustics, and p"c2 (o!o

0
).

We now apply the "rst relation to a rectangular cell C, delimited by the lines x"x
j~1

,
x"x

j
and t"mq, t"(m#1)q, and we obtain,

P
xj

xj~1

u(x, (m#1)q dx"P
xj

xj~1

u (x,mq) dx!
1

o
0
P

(m`1)q

mq
[p (x

j
, t)!p (x

j~1
, t)] dt. (16)

We assume function u (x, t) to be constant in the segment [x
j~1

, x
j
] and to be equal to

u
j~1@2

. At the left and right sides of C, p (x, t) is equal to P
j~1

and P
j
, and as a result we get

from equation (16)

1

h P
xj

xj~1

u (x, (m#1)qdx"u
j~1@2

!

q
h

1

o
0

(P
j
!P

j~1
). (17)

To the left in this equation is the averaged value of velocity at the instant t"(m#1)q,
and it is this value we assume to be a value for the velocity at this instant. Treating the
second of equations (15) in a similar way, we "nally have the formulas for the second step of
the numerical method:

u j~1@2"u
j~1@2

!

q
h

1

o
(P

j
!P

j~1
),

p j~1@2"p
j~1@2

!

q
h
o c2(;

j
!;

j~1
).

(18)

4.2. FORMULAS FOR BOUNDARY POINTS

Let us assume that at the point x"x
1

we have boundary conditions

a (t)u(0, t)#b (t)p (0, t)"f (t).

Godunov (1978) suggests that the values of P
0

and;
0
should be calculated from the system

aJ;
0
#bJ P

0
"fJ,

;
0
!

1

o
0
c
0

P
0
"u

1@2
!

1

o
0
c
0

p
1@2

.
(19)
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Here aJ , bJ , fJ are some approximations of a, b, f during the time interval (t, t#q). From the
physical point of view, equations (19) describe the problem of &&decay of boundary acoustical
gap''. For the problem in question the coe$cients a, b, f are not known beforehand but have
to be calculated together with the hydrodynamical values. We further denote w (mq) as wm.
Replacing equations (1) and (3) by their "nite-di!erence analogues and joining them with
the second of equations (19), we then consider the rear and front face of the sandwich as two
di!erent boundaries.

Starting with the rear face (point x
1
"0) and considering the core to be an acoustical

medium with density o
c

and sound velocity c
c
, the equations of acoustics stay true for

internal points (0(x(d, n"1, 2,2,N) and their "nite-di!erence analogues. Now, we
obtain the following system of algebraic equations over wm`1, P

0
, ;

0
:

Kwm#
m

f
q2

(wm`1!2wm#wm~1)"P
0
,

wm`1!wm~1

2q
"!;

0
,

;
0
!

1

o
c
c
c

P
0
"u

1@2
!

1

o
c
c
#

p
1@2.

(20)

At the front face (point x
N
"d) and the region (x'd, n"N#1, N#2,2, X), i.e., the

#uid, the equations are valid and we have "ve equations:

m
f

q2
(wm`1!2wm#wm~1)"P

N
!P

CN
,

wm`1!wm~1

2q
"!;

N
,

;
N
";

CN
,

;
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!

1

o
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c
0

P
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N`1@2
!

1

o
0
c
0

p
N`1@2

,

;
CN

#

1

o
c
c
c

P
CN

"u
N~1@2

#

1

o
c
c
c

p
N~1@2

. (21)

The solution of this linear system of algebraic equations gives the values of wm`1, P
CN

,
P
N
, ;

CN
, ;

N
. These values are to be used in the determination of the new pressures and

velocities.
As to the "ctitious boundary point x

X
"X, necessary values of P

X
,;

X
may be prescribed

in any arbitrary way, only if the signal from boundary point does not have time to reach the
point in question. In particular, it is possible to assume that ;

X
"P

X
"0.

4.3. NUMERICAL CAVITATION MODEL

The condition of the appearance of cavitation is formulated as

p#p
h
4p

c
, (22)

where p
h
is hydrostatic pressure and set at 0)10 MPa and p

c
is the cavitation pressure. The

pressure in zones with cavitation changes quite weakly and we approximately assume it
equal to pressure in water vapour p

v
"1000 Pa. Therefore, the equation of motion in zones
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with cavitation is

du

dt
"0.

This means that water particles in zones with cavitation move without acceleration and
interaction with each other.

4.4. INITIAL VALUES OF PANEL DISPLACEMENT

As an approximation for the initial deformation of the front face of the sandwich we use the
equations derived by Hayman. Starting with equation (6) that gives the motion of the front
face of the sandwich and substituting in the expressions for the pressures, equations (4), (9)
and (10), we obtain

p
0
e~at#B

1
e~at#B

2
e~bt!A(e~at!e~bt)"m

f
wK
f
(t).

Integrating this equation twice and keeping in mind the initial conditions, equations (2),
we obtain an expression for the initial deformation of the front face:

w (t)"C(p0#B
1
!A)

e~at
a2

#(B
2
#A)

e~bt
b2 DNm

f
. (23)

5. NUMERICAL EXAMPLE

5.1. EXAMPLE BY HAYMAN

To verify the numerical model, the same input as in the analytical solution by Hayman, was
used in this example and the solution obtained is given in Figure 5.

Figure 5 should be compared with Figure 2 and will be seen that the agreement between
the numerical and analytical solutions is very good, concerning the pressure in the water in
front of the sandwich panel.

The numerical calculations for the pressure were made in accordance with the following
procedure: (a) initial pressure and velocity are given by equations (2); (b) initial deformation
of the front face is calculated from equation (23); (c) the auxiliary values;

j
, P

j
are calculated

according to equation (14); (d) P
0
, ;

0
, wm`1 are calculated by solving equations (20) and

wm`1 , P
CN

, P
N
,;

CN
,;

N
by equations (21), and we set P

X
";

X
"0; and (e) pj`1@2 , uj`1@2 are

calculated according to equation (18) and if condition (22) is ful"lled, we set pj`1@2"p
v
,

uj`1@2"u
j`1@2

.
It is necessary to notice here that the values of steps h and q must not only satisfy the

condition of stability of "nite-di!erence scheme (q/h41/c
0
), but also have a certain physical

meaning, namely that they characterize space and time scales of an &&elementary'' cavity.
Zones with cavitation with smaller dimensions cannot exist.

5.2. TRANSVERSE RESPONSE OF SANDWICH PANEL

A simple 1-D "nite-element model (Figure 6), in the transverse direction of the sandwich
panel, consisting of 4 bar elements for each sandwich face and 6 bar elements for the core, is
used in the analysis.

The sandwich panel is assumed to consist of a 90 mm thick PVC core and 7 mm thick
GRP faces. The properties of the core are E

#0.1
"400 MPa, E

5%/4
"300 MPa, o

c
"



Figure 5. Numerical solution of example by Hayman (1995).

Figure 6. Finite-element model.
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250 kg/m3 and for the faces E
#0.1

"3000 MPa, E
5%/4

"30 MPa, o
f
"2100 kg/m3. The

structural sti!ness (K) is assumed to be 1)00]107 N/m and the damping (C) in the core is set
at 1000 Ns/m. For the loading, of the sandwich panel, we assume a 200 kg explosive HBX
charge at a distance of 20 m from the structure.

The numerical solution to this problem was obtained by solving the #uid/structural
coupled problem. For the structure, equation (1) was used and the applied load
was simultaneously solved for, as described in Section 5.1. From the solution of this
coupled system we can for example extract the pressure on the structural surface, as
in Figure 7, and also the cavitation zones in the #uid and the transverse structural
displacement.

Figure 7 shows the pressure on the panel surface and the free-"eld pressure as a function
of time during the analysis. First we have the pressure doubling, followed by a very rapid
decay of the pressure. Just before cavitation occurs at the panel surface, we get a pressure
increase. Then follows a cavitation period and a "rst &&pressure pulse''. After that comes
a cavitation period and another &&pressure pulse'', this time weaker. This sequence of



Figure 7. Pressure on panel surface.
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cavitation and pressure pulse is then repeated a number of times until the pressure slowly
starts to increase again. When this slow increase begins, the formation of cavitation zones
adjacent to the panel surface have stopped. The free-"eld pressure in the "gure, is the
calculated pressure in the #uid as if no structure were present, equation (4).

This behaviour of the pressure, on the structural surface, is quite di!erent from what is
expected on a homogeneous panel, where we also have a quick decay, followed by a longer
cavitation period and then the slowly increasing pressure with time.

5.2.1. Cavitation zones in the -uid
Since the numerical model consists of nodes in the #uid, it is possible to trace the cavitation
zones. As can be seen from Figures 8(a) and 8(b), cavitation starts about 0)180 ms from the
time when the shock wave arrives at the structure and is developed approximately 180 mm
away from the structural surface. At time 0)200 ms, cavitation begins to develop at the
#uid/structure interface and the pressure drops to zero, in accordance with Figure 7.
Comparing the pressure curve in Figure 7 and the cavitation zones in Figure 8(a) and 8(b) it
can be seen that when there is a layer of #uid attached to the structure, there is also
a pressure on the structure.

After approximately 1)60 ms, the pressure on the structural surface slowly starts to
increase and the cavitation zone grows in size and moves away from the structure.

5.2.2. ¹ransverse structural response
In Figure 9(a), the displacements for the "rst 1)60 ms are plotted and we can see that after
approximately 0)085 ms the loading starts to a!ect the rear face. During the loading phase
the front face, water side and core side, are deformed more or less equally. When cavitation
starts, the loading is taken away and the displacement rate of the front face slows down. At
this time the displacement of the rear face has accelerated and the deformation exceeds that
of the front face. Now, the whole section is in tension and, due to the much lower tension



Figure 8(a). Cavitation zones (in mm) at distinct times in front of the sandwich structure.
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properties of the faces, each side of the front and rear face is not deformed equally. Shortly
after, the front face catches up the rear face, and a similar cycle starts again with one
compression phase followed by one tension phase. From Figures 7 and 9 it can be seen that
the compression phases of the core approximately coincide with the &&pressure pulses'' in the
loading on the panel surface. As the pressure becomes smaller, the oscillation of the faces
and core decays and "nally stops.

Figure 9(b) is an ampli"cation of the "rst 0)50 ms of the displacement of the sandwich.
From this "gure we can see the di!erence in displacement of the front and rear face of the
sandwich. Further, the di!erence on the core side and #uid side is visible for the front face
and core side and the air side for the rear face. During the "rst 0)23 ms the whole section is
in compression, but during the time interval of 0)23}0)43 ms the section is in tension and



Figure 8(b). cavitation zones (in mm) at distinct times in front of the sandwich structure.

TRANSVERSE RESPONSE OF SANDWICH PANELS 643
the much poorer tension properties in the faces cause signi"cant strain in the faces, as can be
seen in Figure 10. The tension modulus is only 1% of the compression modulus. The
decaying oscillation of the faces depends mainly on the fact that the load is decaying in
magnitude and pulsation and slowly converging to an almost constant value. In this case
the faces are subjected to strain in the range of 2)5}3)5%. The question is whether this is
enough to cause delamination or not. In order to answer this question we need to make
a detailed analysis of the laminate in the transverse direction or obtain reliable results from
delamination tests.

The core has a tension modulus that is 75% of the compression modulus, and
the variation in compression and tension strain is not that signi"cant. The decaying
amplitude is due to the damping properties of the core. In this case we have a maximum
strain of about 1% and for most types of PVC cores used in sandwich construction this is
not critical.



Figure 9(a). Transverse displacement of the sandwich; (b) transverse displacement of the sandwich, "rst
0.50 ms.
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6. CONCLUSION

The numerical method developed in this paper shows good agreement with the analytical
solution by Hayman. In one example, the pressure in the #uid in front of the panel was
compared to Hayman's, and the agreement between the analytical and numerical solution,
is very good.

The #uid}structure interaction between a #uid and a sandwich shell structure is quite
di!erent from that of the interaction between a #uid and a homogeneous shell structure. In
the case of a sandwich structure, initially two cavitation zones open up, while for



Figure 10. Transverse core and face strains.
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a homogenous structure only one occurs. The distance from the structure at which these
open is quite di!erent for the two cases. The numerical method also allows the tracing of
cavitation zones, in the #uid, in front of the sandwich structure, and it was found that when
there is a pressure on the structural surface there is also an amount of #uid attached to the
structure.

By using a simpli"ed 1-D "nite element model, of a sandwich section, in the transverse
direction, the nonlinear response has been investigated. The results show that there is
a strong interaction between the displacement of the sandwich and the pressure on the front
face. As the whole sandwich section is moving, the faces oscillate about the core and this
oscillation may give rise to signi"cant strain in the di!erent parts of the sandwich. The
poorer tension properties of the faces, in the transverse direction, give rise to strains that
might lead to delamination of the faces when they are in tension. The strain in the core is
more or less equal in compression and tension during the oscillation, due to its properties,
and damping causes the oscillation to decay.

REFERENCES

BLEICH, H. H. & SANDLER, I. S. 1970 Interaction between structures and bilinear #uids. ¹he Interna-
tional Journal of Solids and Structures 6, 617}639.

COLE R. H. 1948 ;nderwater Explosions. Princeton, N.J.: Princeton University Press.
CREMER, L. & HECKL, M. 1973 Structure-Borne Sound. Berlin: Springer.
DIMAGGIO, F. L., SANDLER, I. S. & RUBIN, D. 1981 Uncoupling approximations in #uid-structure

interaction problems with cavitation. Journal of Applied Mechanics 48, 753}756.
DRIELS, M. R. 1980 The e!ect of a non-zero cavitation tension on damage sustained by a target plate

subject to an underwater explosion. Journals of Sound and <ibration 73, 533}545.
GALIEV, S. U. 1981 ¹he Dynamics of Hydro-Elastic-Plastic Systems. Kiev: Naukova dumka (in

Russian).
GEERS, T. L. 1978 Doubly asymptotic approximation for transient motions of submerged structures.

¹he Journal of the Acoustical Society of America 64, 1500}1508.



646 K. MAG KINEN
GODUNOV, S. K. 1978 Numerical Solution of Multi-Dimensional Problems of Gas Dynamics. Moscow:
Nauka (in Russian).

HANDELTON, R. T. 1985 Analysis of cavitation caused by shock wave interaction with a restrained
mass. ¹he Shock and <ibration Bulletin 55, 193}203.

HAYMAN, B. 1995 Underwater explosion loading on foam-cored sandwich panels. Sandwich Construc-
tion 3, EMAS, Proceedings from the ¹hird International Conference on Sandwich Construction,
May 11}15, Southampton, England.

KADYROV, S. 1998 Personal communication, Department of Mathematics, State Marine Technical
University, St.Petersburg, Russia.

KEIL, A. H. 1961 The response of ships to underwater explosions. SNAME annual meeting, 16}17
November, New York, U.S.A.

KENNARD, E. H. 1943 Explosive load on underwater structures as modi"ed by bulk cavitation.
;nderwater Explosion Research 3, 227}253.

MINDLIN, R. D. & BLEICH, H. H. 1953 Response of an elastic cylindrical shell to a transverse step shock
wave. Journal of Applied Mechanics 20, 189}195.

TAYLOR, G. I. 1941 The pressure and impulse of submarine explosion waves on plates. ;nderwater
Explosion Research 1, 1155}1173.


	1. INTRODUCTION
	2. GOVERNING EQUATIONS
	3. ANALYTICAL SOLUTION
	4. NUMERICAL METHOD
	Figure 1
	Figure 2
	Figure 3
	Figure 4

	5. NUMERICAL EXAMPLE
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

	6. CONCLUSION
	Figure 10

	REFERENCES

